Correct Answer - Option 1 : 260 kW
Concept:
Steady Flow Energy Equation (S.F.E.E.)
\(m\left( {{h_1} + \;\frac{{C_1^2}}{2} + g{z_1}} \right) + Q = m\;\left( {{h_2} + \frac{{C_2^2}}{2} + g{z_2}} \right) + W\)
where m = mass flow rate in kg/s, h1 = enthalpy at inlet, h2 = enthalpy at outlet, C1 = velocity at inlet in m/s, C2 = velocity at outlet in m/s, z1 = potential head at inlet in m, z2 = potential head at outlet in m, Q = heat flow in kW, W = work done in kW.
Calculation:
Given:
m = 1 kg/s, C1 = 10 m/s, p1 = 100 kPa, ν1 = 1 m3/kg, C2 = 6 m/s, p2 = 800 kPa, ν2 = 0.2 m3/kg, Q (Absorbed by cooling water from air) = -100 kW, ΔU = 100 kJ/kg
\(m\left( {{h_1} + \;\frac{{C_1^2}}{2} + g{z_1}} \right) + Q = m\;\left( {{h_2} + \frac{{C_2^2}}{2} + g{z_2}} \right) + W\)
From the above formula we have,
\(Δ K.E~=~\frac{C_2^2~-~C_1^2}{2}~=~\frac{36~-~100}{2}~=~-~32~J/kg ~=~-~0.032~kJ/kg\)
ΔP.E = 0
Δh = Δ (U + pv)
∴ Δpv = (800 × 103 × 0.2) - (100 × 103 × 1) = 60 kJ/kg
Δh = 100 + 60 = 160 kJ/kg
From SFEE we have,
Q - W = m(Δh + ΔK.E + ΔP.E)
- 100 - W = 1(160 - 0.032)
W = - (159.968 + 100)
W = - 259.968 ≈ - 260 kW
W = 260 kW
- ve sign is because work is done on the compressor.