Correct Answer - Option 2 : 1 : 4
Given:
We have to find the ratio of the areas of the incircle and the circumcircle of an equilateral triangle.
Formula used:
The radius of incentre = a/(2√3)
The radius of circumcentre = a/√3
Area of circle = πr2
Where,
a = side of an equilateral triangle
r = radius of the circle
Calculation:
Let the side of the triangle be ‘a’.
The radius of incentre = a/(2√3)
The radius of circumcentre = a/√3
Area of incircle = π[a/(2√3)]2
Area of circumcircle = π[a/(√3)]2
\( \Rightarrow \;\frac{{{\rm{Area\;of\;incircle}}}}{{{\rm{Area\;of\;circumcircle}}}}\; = \;\frac{{{\rm{\pi }}{{\left[ {{\rm{a}}/\left( {2\surd 3} \right)} \right]}^2}}}{{{\rm{\pi }}{{\left[ {{\rm{a}}/\left( {\surd 3} \right)} \right]}^2}}}\)
\( \Rightarrow \frac{{{\rm{\pi }}{{\left[ {{\rm{a}}/\left( {2\surd 3} \right)} \right]}^2}}}{{{\rm{\pi }}{{\left[ {{\rm{a}}/\left( {\surd 3} \right)} \right]}^2}}}\)
⇒ 1 : 4
∴ The ratio is 1 : 4.