Correct Answer - Option 3 :
\(\rm \frac{-1}{2} {e^{-2x}}+c\)
Concept:
\(\rm \int e^x dx = e^x + c\)
Calculation:
I = \(\rm \int \frac{1}{e^{2x}}dx\)
= \(\rm \int {e^{-2x}}dx\)
Let -2x = t
Differentiating with respect to x, we get
⇒ -2dx = dt
⇒ dx = \(\frac {-1}{2}\)dt
Now,
I = \(\rm \frac{-1}{2}\int {e^{t}}dt\)
= \(\rm \frac{-1}{2} {e^{t}}+c\)
= \(\rm \frac{-1}{2} {e^{-2x}}+c\)