Correct Answer - Option 2 : π / 6
Concept:
Vector Triple Product: Vector Triple Product is a vector quantity.
Vector triple product of three vectors a, b, c is defined as the cross product of vector a with the cross product of vectors b and c, i.e. a × (b × c)
a × (b × c) = (a . c) b – (a . b) c
a.b = |a||b|cos θ
Calculation:
Here, |a| = 1, |b| = 1, |c| = 2
\(\rm \vec a × (\vec a × \vec c) - \vec b = 0\)
\(\rm (\vec a.\vec c)\vec a-(\vec a.\vec a)\vec c-\vec b=0\)
\( \rm (\vec a.\vec c)\vec a=(\vec a.\vec a)\vec c+\vec b\)
\(\rm (|a||c|cosθ)\vec a=(|a||a|cos 0)\vec c+\vec b\)
\(\rm 2\cos θ\; \vec{a} = \vec{c}+\vec{b}\)
\(\rm 2\cos θ\; \vec{a} - \vec{c}=\vec{b}\)
Taking magnitude both sides, we get
4cos2 θ |a|2 + |c|2 - 2 × 2cos θ \(\rm \vec a \cdot \vec c\) = |b|2
4cos2 θ + 4 - 2 × 2cos θ × |a||c|cos θ = 1
4cos2 θ + 4 - 8cos2 θ = 1
4cos2 θ = 3
cos2 θ = \(\frac 3 4\)
cos θ = \(\frac {\sqrt{3}}{2}\)
∴ θ = π / 6
Hence, option (2) is correct.