Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
82 views
in Trigonometry by (72.8k points)
closed by
If \(\rm \sin^{-1} \dfrac{2a}{1+a^2} + \sin^{-1} \dfrac{2b}{1+b^2}=2 \tan^{-1} n\) then?
1. \(n=\dfrac{a-b}{1+ab}\)
2. \(n=\dfrac{(ab)}{(a-a)}\)
3. \(n=\dfrac{(a+b)}{(1-ab)}\)
4. \(n=\dfrac{(1-ab)}{(1+ab)}\)

1 Answer

0 votes
by (121k points)
selected by
 
Best answer
Correct Answer - Option 3 : \(n=\dfrac{(a+b)}{(1-ab)}\)

Concept:

Double angle formula:

\(\rm \sin2x=\dfrac{2\tan x}{1+\tan^2}\)

Addition formula:

\(\rm \tan(x+y) = \dfrac{\tan x + \tan y}{1-\tan x\tan y}\)

 

Calculation:

The given identity is \(\rm \sin^{-1}\left(\frac{2a}{1+a^2}\right) + \sin^{-1}\left(\frac{2b}{1+b^2}\right) = 2\tan^{-1}n\).

Let \(\rm a = \tan y_1\mbox{ and } b= \tan y_2\).

Therefore, the given equation becomes:

\(\rm \sin^{-1}\left(\frac{2a}{1+a^2}\right) + \sin^{-1}\left(\frac{2b}{1+b^2}\right)= 2\tan^{-1}n\)

\(\rm \sin^{-1}\left(\frac{2(\tan y_1)}{1+(\tan y_1)^2}\right) + \sin^{-1}\left(\frac{2(\tan y_2)}{1+(\tan y_2)^2}\right) = 2\tan^{-1}n\)

\(\rm \sin^{-1}\left(\sin 2y_1\right)+\sin^{-1}\left(\sin 2y_2\right) = 2\tan^{-1}n\)

\(\rm 2y_1 +2y_2 = 2\tan^{-1}n\)

\( \rm y_1 +y_2 = \tan^{-1}n \)

\(\rm \tan(y_1 + y_2) = n\)

\(\rm \frac{\tan y_1 + \tan y_2}{1-\tan y_1\tan y_2}=n\)

\(\rm \frac{a+b}{1-ab}=n \)

Therefore, \(\rm n = \frac{a+b}{1-ab}\).

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...