Correct Answer - Option 4 : 6
Given
(x +(1/x)) = 2,
(x5 + x4 + x3 + x2 + x + 1) = ?
Calculation
⇒ (x +(1/x)) = 2
⇒ (x2 + 1)/x = 2
⇒ x2 + 1 = 2x
⇒ x2 - 2x + 12 = 0
⇒ (x - 1)2 = 0
⇒ x = 1
Now, Put the value in the given equation
⇒ (x5 + x4 + x3 + x2 + x + 1) = (15 + 14 + 13 + 12 + 1 + 1)
⇒ (x5 + x4 + x3 + x2 + x + 1) = 6
∴ (x5 + x4 + x3 + x2 + x + 1) = 6
Alternate method
(x +(1/x)) = 2
In this type of question in which x +(1/x)) = 2,
You can directly put value of x = 1
When you put x = 1
⇒ x +(1/x)) = 2
i.e R.H.S = L.HS
So, put the value of x = 1 in the equation
⇒ (x5 + x4 + x3 + x2 + x + 1) = 6
∴ (x5 + x4 + x3 + x2 + x + 1) = 6