Given polynomial is t2 – 15.
We have, t2 – 15 = (t – √15 ) (t + √15)
The value of t2 – 15 is 0,
when the value of (t – √15 ) (t + √15) = 0, i.e.,
when t – √15 = 0 or t + √15 = 0, i.e.,
when t = √15 (or) t = -√15
∴ The zeroes of t2 – 15 are √15 and -√15.
Therefore, sum of the zeroes = √15 + (-√15) = 0
\(=-\frac{Coefficient\,of \, t}{Coefficient\,of\,t^2}=-\frac{0}{1}=0\)
And product of the zeroes √15 × (-√15) = -15
\(=\frac{Constant\,term}{Coefficient\,of\,t^2}=\frac{-15}{1}=-15\)