Let the side of first square = x m say
Then perimeter of the first square = 4x [∵ P = 4 . side]
By problem, perimeter of the second square = 4x + 24 (or) 4x – 24
∴ Side of the second square =

Now sum of the areas of the two squares is given as 468 m2
x2 + (x + 6)2 = 468
⇒ x2 + x2 + 12x + 36 = 468
⇒ 2x2 + 12x + 36 – 468 = 0
⇒ 2x2 + 12x – 432 = 0
⇒ x2 + 6x – 216 = 0
⇒ x2 + 18x – 12x – 216 = 0
⇒ x(x + 18)- 12(x + 18) = 0
⇒ (x + 18) (x – 12) = 0
⇒ x + 18 = 0 (or) x – 12 = 0
⇒ x = -18 (or) 12
But x can’t be negative.
∴ x = 12
i.e., side of the first square = 12
∴ Perimeter = 4 × 12 = 48
∴ Perimeter of the second square = 48 + 24 = 72
∴ Side of the second square = 72/4 = 18 m.
(or)
x2 + (x – 6)2 = 468
⇒ x2 + x2 – 12x + 36 = 468
⇒ 2x2 – 12x – 432 – 0
⇒ x2 – 6x – 216 = 0
⇒ x2 – 18x + 12x – 216 = 0
⇒ x(x-18) + 12(x-18) = 0
⇒ (x – 18) (x + 12) = 0
⇒ x – 18 = 0 (or) x + 12 = 0
⇒ x = 18 (or) – 12
But x can’t be negative.
∴ x = 18
i.e., side of the first square = 18 m
∴ Perimeter = 4 × 18 = 72
Perimeter of the second square = 72 – 24 = 48
∴ Side of the second square = 48/4 = 12 m.
i.e., In any way, the sides of the squares are 12m, 18m.