
Given: A circle with centre ‘O’.
Two tangents \(\overleftrightarrow{PQ}\)and \(\overleftrightarrow{PT}\) from an external point P.
Let Q, T be the points of contact.
R.T.P: ∠P and ∠QOT are supplementary.
Proof: OQ ⊥ PQ
[∵ radius is perpendicular to the tangent at the point of contact] also OT ⊥ PT
∴ ∠OQP + ∠OTP = 90° + 90° = 180°
Now in □PQOT,
∠OTP + ∠TPQ + ∠PQO + ∠QOT = 360° (angle sum property)
180° + ∠P + ∠QOT = 360°
∠P + ∠QOT = 360°- 180° = 180°
Hence proved. (Q.E.D.)