
Let the height of the tower = h mts say
Width of the road be = x m.
Distance between two points of observation = 10 cm.
Angles of elevation from the two points = 60° and 30°.
From the figure
tan 60° = \(\frac{h}{x}\)
√3 = \(\frac{h}{x}\)
⇒ h = √3x …….(1)
Also tan 30° = \(\frac{h}{x+10}\)
⇒ \(\frac{1}{\sqrt{3}}\) = \(\frac{h}{x+10}\)
⇒ h = \(\frac{10+x}{\sqrt{3}}\) ………(2)
From equations (1) and (2) h
h = √3x = \(\frac{10+x}{\sqrt{3}}\)
∴ √3x = \(\frac{10+x}{\sqrt{3}}\)
√3 × √3x = 10 + x
⇒ 3x – x = 10
⇒ 2x = 10
⇒ x = 10/2 = 5m
∴ Width of the road = 5 m
Now Height of the tower = √3x = 5√3 m.