Sum of n terms of series is
Sn = 1 x 2 x 3 + + 2 x 3 x 4 + 3 x 4 x 5 +......+n x (n + 1) x (n + 2)
= Σn(n + 1)(n + 2)
= Σn(n2 + 3n + 2)
= Σn (n3 + 2n2 + 2n)
= Σn3 + 3Σn2 + 2Σn
= \((\frac{n(n+1)}2)^2+3\frac{n(n+1)(2n+1)}6+\frac{2n(n+1)}2\)
= \(\frac{n(n+1)}{4}\)(n(n + 1) + 2(2n + 1) + 4)
= \(\frac{n(n+1)}{4}\)(n2 + n + 4n + 2 + 4)
= \(\frac{n(n+1)}{4}\) (n2 + 5n + 6)
= \(\frac{n(n+1)(n+2)(n+3)}4\)