28. Solve the following pair of linear equations.
(i). px + qy = p − q , qx − py = p + q
(ii). ax + by = c, bx + ay = 1 + c
(iii). x/a – y/b = 0, ax + by = a2 + b2
(iv). (a − b) x + (a + b) y = a2− 2ab − b2
(a + b) (x + y) = a2 + b2
(v) 152x − 378y = − 74
− 378x + 152y = − 604
Answer:
(i) px + qy = p − q ……………………..… (1)
qx − py = p + q ……………………..… (2)
Multiplying equation (1) by p and equation (2) by q, we obtain
p2x + pqy = p2 − pq …………………………… (3)
q2x − pqy = pq + q2 ………………………..… (4)
Adding equations (3) and (4), we obtain
p2x + q2 x = p2 + q2
(p2 + q2) x = p2 + q2

From equation (1), we obtain
p (1) + qy = p − q qy = − q y = − 1
(ii)ax + by = c ……………… (1)
bx + ay = 1 + c ……….. (2)
Multiplying equation (1) by a and equation (2) by b, we obtain
a2x + aby = ac ………………… (3)
b2x + aby = b + bc …………… (4)
Subtracting equation (4) from equation (3),
(a2 − b2) x = ac − bc − b

From equation (1), we obtain
ax + by = c

(iii). x/a – y/b = 0......................(1)
ax + by = a2 + b2 ......................(2)
Multiplying equation (1) and (2) by b and a respectively, we obtain
b2x − aby = 0 …………….…… (3)
a2x + aby = a3 + ab2 ……………… (4)
Adding equations (3) and (4), we obtain
b2x + a2x = a3 + ab2
x (b2 + a2) = a (a2 + b2) x = a
By using (1), we obtain
b (a) − ay = 0
ab − ay = 0
ay = ab
y = b
(iv) (a − b) x + (a + b) y = a2− 2ab − b2 …………………. (1)
(a + b) (x + y) = a2 + b2
(a + b) x + (a + b) y = a2 + b2 ………………….… (2)
Subtracting equation (2) from (1), we obtain
(a − b) x − (a + b) x = (a2 − 2ab − b2) − (a2 + b2)
(a − b − a − b) x = − 2ab − 2b2
− 2bx = − 2b (a + b)
x = a + b
Using equation (1), we obtain
(a − b) (a + b) + (a + b) y = a2 − 2ab − b2
a2 − b2 + (a + b) y = a2− 2ab − b2
(a + b) y = − 2ab
\(y = \frac{-2ab}{a + b}\)
(v) 152x − 378y = − 74
76x − 189y = − 37

− 378x + 152y = − 604
− 189x + 76y = − 302 … (2)
Substituting the value of x in equation (2), we obtain

− (189)2 y + 189 × 37 + (76)2 y = − 302 × 76
189 × 37 + 302 × 76 = (189)2 y − (76)2 y
6993 + 22952 = (189 − 76) (189 + 76) y
29945 = (113) (265) y
y = 1
From equation (1), we obtain

29. ABCD is a cyclic quadrilateral finds the angles of the cyclic quadrilateral.

Answer:
We know that the sum of the measures of opposite angles in a cyclic quadrilateral is 180°.
Therefore,
∠A + ∠C = 180
4y + 20 − 4x = 180
− 4x + 4y = 160
x − y = − 40 ………………………(i)
Also, ∠B + ∠D = 180
3y − 5 − 7x + 5 = 180
− 7x + 3y = 180 …………………..(ii)
Multiplying equation (i) by 3, we obtain
3x − 3y = − 120 ……………………(iii)
Adding equations (ii) and (iii), we obtain
− 7x + 3x = 180 − 120
− 4x = 60
x = −15
By using equation (i), we obtain
x − y = − 40
−15 − y = − 40
y = −15 + 40 = 25
∠A = 4y + 20 = 4(25) + 20 = 120°
∠B = 3y − 5 = 3(25) − 5 = 70°
∠C = − 4x = − 4(− 15) = 60°
∠D = − 7x + 5 = − 7(−15) + 5 = 110°