
We have CD = \(\frac {200 (\sqrt3+1)}{\sqrt3}\)
Let Ac = x m
∴ In right △CAB,
tan 60° = \(\frac {AB}{AC}\)
= AC = \(\frac {AB}{tan 60°} = \frac {AB}{\sqrt3}\).......(i)
In right △ DAB
tan 45° = \(\frac {AB}{AD}\)
= AB = AD + tan 45° = AD
= AC + CD
= \(\frac {AB}{\sqrt3} + \frac {200(\sqrt3+1)}{\sqrt3}\) (∵ CD = \( \frac {200(\sqrt3+1)}{\sqrt3}\))
= AB - \(\frac {AB}{\sqrt3} + \frac {200(\sqrt3+1)}{\sqrt3}\)
= \((\frac {\sqrt3-1}{\sqrt3})\) AB = \( \frac {200(\sqrt3+1)}{\sqrt3}\)
= Ab = \( \frac {200(\sqrt3+1)}{\sqrt3-1}\)
= \( \frac {200(\sqrt3+1)^2}{\sqrt3-1}\)
= 100 (3+1 + 2√3)
= 200 (2+√3) m.
Hence, height of the light house is 200 (2+√3)m