Given that 0° < θ < 90°
Also sin θ + cos θ = \(\sqrt2\)
⇒ sin2θ + cos2θ + 2sinθ cosθ= 2
By squaring both side
⇒ 1 + sin 2θ = 2 (\(\because\) sin2 θ + cos2θ = 1 and 2 sinθ cosθ = sin 2θ)
⇒ sin 2θ = 2 - 1 = 1 = sin π/2 (\(\because\) if 0° < θ < 90° ⇒ 0° < 2 θ < 180°)
⇒ 2 θ = sin π/2
⇒ θ = π/4
Alternative method:
⇒ sin θ + cos θ = \(\sqrt2\) (Given)
⇒ sin θ + cos θ = 1/√2 + 1/√2 (\(\because\) 1/√2 + 1/√2 = 2/√2 = √2)
⇒ sin θ + cos θ = sin \(\frac{\pi}4\) + cos \(\frac{\pi}4\)
\(\therefore\) θ = \(\frac{\pi}4\)