Given differential equation is
x2 \(\frac{d^2y}{dx^2}+5x\frac{dy}{dx}-5y=2log x\)
Let x = ez then x\(\frac{dy}{dx}=\frac{dy}{dz}\) = Dy, where \(\frac{d}{dx}=D\)
and \(x^2\frac{d^2y}{dx^2}\) = D(D - 1)y
\(\therefore\) Given differential equation converts into
D(D - 1)y + 5Dy - 5y = 2z (\(\because\) log x = z)
⇒ (D2 - D + 5D - 5)y = 2z
⇒ (D2 + 4D - 5)y = 2z----(1)
It's auxilarly equation is
m2 + 4m - 5 = 0
⇒ (m + 5)(m - 1) = 0
⇒ m + 5 = 0 or m - 1 = 0
⇒ m = -5 or m = 1
\(\therefore\) C.F. = C1e-5z + C2ez
& P.I. = \(\frac{1}{D^2+4D-5}2z\)
\(=\frac{-2}5\cfrac1{1-\frac{D^2+4D}5}z\)
\(=\frac{-2}5(1-\frac{D^2+4D}5)^{-1}z\)
\(=\frac{-2}5(1+\frac{D^2+4D}5+\frac{(D^2+4D)^2}{5^2}+....)z\)
(\(\because\) (1 - x)-1 = 1 + x + x2+....)
\(=\frac{-2}5(z+\frac15D^2z+\frac45 Dz)\)
\(=\frac{-2}5(z+0+\frac45)\) (\(\because\) Dz = \(\frac{dz}{dz}=1\))
\(=\frac{-2}5z-\frac8{25}\)
\(\therefore\) Complete solution of differential equation(1) is
y = C.F. + P. I.
= C1(ez)-5 + C2ez- \(\frac25z-\frac8{25}\)
= C1x-5 + C2 x - \(\frac25\) log x - \(\frac8{25}\)
(\(\because\) ez = x ⇒ z = log x)
= \(\frac{C_1}{x^5}+C_2x - \frac25logx-\frac8{25}\)
which is solution of given differential equation.