If two lines are coplanar then

Given (x1,y1,z1) is (−3,1,5) and (x2,y2,z2) is (−1,2,5) and l1,m1,n1=−3,1,5
l2,m2,n2=−1,2,5
Substituting the values

2(5−10)−1(−15+5)=0
Hence the lines are coplanar.
The equation of the plane containing these lines is

(x+3)(5−10)−(y−1)(−15+5)+(2−5)(−6+1)
⇒−5(x+3)+10(y−1)−5(z−5)
⇒−5x+10y−5z−30=0
5x−10y+5z+30=0
5(x−2y+z+6)=0
x−2y+z+6=0
or
5x−10y+5z+30=0
∴ The equation of the plane is 5x−10y+5z+30=0.