\(\because\) A.M. \(\geq\) G.M.
\(\therefore\) \(\frac{cos A+cos B+cos C}3\geq(cos A. cos B. cos C)^{1/3}\)
But we know that Cos A + Cos B + Cos C \(\leq\) 3/2
\(\therefore\) (cos A. Cos B. Cos C)1/3 \(\leq\) \(\frac{3/2}3=\frac12\)
\(\therefore\) Cos A. Cos B. Cos C \(\leq\) \((\frac1{2})^3\)
⇒ Cos A. Cos B. Cos C \(\leq\) \(\frac18\)
Hence, maximum value of Cos A. Cos B. Cos C is 1/8