Initial pressure of steam, p_{1}= 5.5 bar = 5.5 ×10^{5}N/m^{2}p1=5.5bar=5.5×105N/m2
Initial condition of steam, x_{1}=1x1=1
Final pressure of steam, p_{2}= 0.75p2=0.75 bar = 0.75 bar × 10^{5} N/m^{2}105N/m2
At 5.5 bar, v_{1}=v_{g}=0.3427m^{3}/kgv1=vg=0.3427m3/kg
Also p_{1}v_{1}=p_{2}v_{2}p1v1=p2v2
\therefore∴ v_{2}=\frac{p_{1}v_{1}}{p_{2}}=\frac{5.5\times 0.3427}{0.75}=2.513 m^{3}/kgv2=p2p1v1=0.755.5×0.3427=2.513m3/kg
At 0.75 bar, v_{g}=2.217 m^{3}/kgvg=2.217m3/kg .
Since v_{2}> v_{g}v2>vg (at 0.75 bar),therefore, the steam is superheated at state 2.Interpolating from superheat tables at 0.75 bar,we have
u_{2}=2510+\left ( \frac{2.513-2.271}{2.588-2.271} \right )(2585 – 2510)u2=2510+(2.588−2.2712.513−2.271)(2585–2510)
= 2510 +\frac{0.242}{0.317}\times 75=2567.25=2510+0.3170.242×75=2567.25 kJ/kg.
For dry saturated steam at 5.5 bar
u_{1}=u_{g}= 2565u1=ug=2565 kJ/kg
Hence, gain in internal energy
=u_{2}-u_{1}= 2567.25 – 2565 = 2.25=u2−u1=2567.25–2565=2.25 kJ/kg
The process is shown on a p-v diagram in Fig. 2.61, the shaded area representing the work done.
Now, W=\int_{v_{1}}^{v_{2}} p dvW=∫v1v2pdv
=\int_{v_{1}}^{v_{2}}\left ( \frac{constant}{v} \right )dv=∫v1v2(vconstant)dv \left [ \because pv = constant and p=\frac{constant}{v}\right ][∵pv=constant and p=vconstant]
=constant \left [ \log_{e} v\right ]_{v_{1}}^{v_{2}}[logev]v1v2
The constant is either p_{1}v_{1}p1v1 or p_{2}v_{2}p2v2
i.e., W = 5.5 × 10^{5} × 0.3427 × \log_{e}\frac{p_{1}}{p_{2}}W=5.5×105×0.3427×logep2p1 \left [ \because p_{1} v_{1}=p_{2}v_{2} or \frac{v_{2}}{v_{1}}=\frac{p_{1}}{p_{2}}\right ][∵p1v1=p2v2 or v1v2=p2p1]
= 5.5 × 10^{5}\times 0.3427 ×\log_{e}\left ( \frac{5.5}{0.75} \right )= 375543=5.5×105×0.3427×loge(0.755.5)=375543 Nm/kg.
Using non-flow energy equation, we get
Q=\left ( u_{2}-u_{1} \right )+WQ=(u2−u1)+W
=2.25+\frac{375543}{10^{3}}=377.79=2.25+103375543=377.79 say 378 kJ/kg
i.e., Heat supplied = 378 kJ/kg