Let `alpha , beta , gamma ` parametric angles of 3 points P,Q and R respectively lying on `x^(2)+y^(2)=1 `. If the length of chords AP, PQ and AR are in GP where A is (-1,0), then `[Given , alpha , beta ,gamma in (0,2pi)]`.
A. `sin""(alpha + gamma)/(4) cos""(alpha -gamma)/(4) ge sin""(beta)/(2)`
B. `sin((alpha + gamma)/(4)) cos((alpha -gamma)/(4)) le sin(beta)/(2)`
C. `sin""(alpha )/(2) sin""(gamma)/(2) ge sin""(beta)/(2)`
D. `sin""(alpha )/(2) sin""(gamma)/(2) le sin""(beta)/(2)`