The general solution of the differential equation `(dy)/(dx)+sin(x+y)/2=sin(x-y)/2`
is
(a) `( b ) (c)logtan(( d ) (e) (f) y/( g )2( h ) (i) (j))=c-2sinx (k)`
(l)
(m) `( n ) (o)logtan(( p ) (q) (r) y/( s )4( t ) (u) (v))=c-2sin(( w ) (x) (y) x/( z )2( a a ) (bb) (cc))( d d )`
(ee)
(ff) `( g g ) (hh)logtan(( i i ) (jj) (kk) y/( l l )2( m m ) (nn)+( o o )pi/( p p )4( q q ) (rr) (ss))=c-2sinx (tt)`
(uu)
(vv)
`( w w ) (xx)logtan(( y y ) (zz) (aaa) y/( b b b )4( c c c ) (ddd)+( e e e )pi/( f f f )4( g g g ) (hhh) (iii))=c-2sin(( j j j ) (kkk) (lll) x/( m m m )2( n n n ) (ooo) (ppp))( q q q )`
(rrr)
A. `log|tan((y)/(2))=2sinx`
B. `log|tan((y)/(4))=c-2sin((x)/(2))`
C. `log|tan((y)/(4)+pi/(4))=c-2sinx`
D. `log|tan((y)/(4)+pi/(4))=c-2sin((x)/(2))`