Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2025 Foundation Course
NEET 2025 Foundation Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
80 views
in Chemistry by (75.1k points)
When an atom or an ion is missing from its normal lattice site, a lattice vacancy (Schottky defect) is created. In stoichimetric ionic crystals, a vacancy of one ion has to be accompanied by the vacancy of the oppositely charged ion in order to maintain electrical neutrality.
In a Frenkel defect an ion leaves its position in the lattice and occupies an interstitial void. This is the Frenkel defect commonly found along with the Schottky defects and interstitials. In pure alkali halides, Frenkel defects are not found since the ions cannot get into the interstitial sites. Frenkel defects are found in silver halides because of the small size of the `Ag^(+)`ion. Unlike Schottky defects, Frenkel defects do not change the denstiy of the solids. In certain ionic solids (e.q. AgBr) both Schottky and Frenkel defects occur.
The defects discussed above do not disturb the stoichiometry of the crystalline material. There is large variety of non-stoichiomertic inorganic solids which contain an excess or deficiency of one of the elements. Such solids showing deviations from the ideal stoichiometric composition from an inmportant group of solids. For example in the vanadium oxide, `VO_(x)`, x can be anywhere between 0.6 and 1.3. There are solids which are difficult to prepare in the stoichiometric composition. Thus, the ideal composition in compounds such as FeO is difficult to obtain (normally we get a composition of `Fe_(0.95)O` but it may range from `Fe_(0.93)O " to " Fe_(0.96)O`). Non-stoichiometric behaviour is most commonly found for transition metal compounds though is also known for some lanthanoids and actinoids.
Zinc oxide loses oxygen reversibly at high temperature and turns yellow in colour. The excess metal is accommodated interstitially, giving rise to electrons trapped in the neighbourhood. The enhanced electrical conductivity of the non-stoichiometric ZnO arises from these electrons.ltrbgt Anion vacancies in alkali halides are produced by heating the alkali halide crystals in an atmosphere of the alkali metal vapur. When the metal atoms deposit on the surface they diffuse into the crystal and after ionisation the alkali metal ion occupies cationic vacancy whereas electron occupies anionic vacancy. Electrons trapped in anion vacancies are referred to as F-centers (from Farbe the German word for colour) that given rise to interesting colour in alkali halides. Thus, the excess of potassium in KCl makes the crytal appear violet and the excess of lithium in LiCl makes it pink.
When LiCl is heated into the vapour of lithium, the crystal acquires pink colour. This is due to
A. Schottkty defects
B. Frenkel defect
C. Metal excess defect leading to F-centers
D. Electronic defect

Please log in or register to answer this question.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...