Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
602 views
in Mathematics by (75.1k points)
Antiderivative of `int sin^2x/(1+ sin^2x)` w.r.t. `x` is
A. `x-sqrt(5)/(2)"arc " tan(sqrt(2)tanx)+C`
B. `x-1/2"arc "tan(tanx)/(sqrt(2))+C`
C. `x-sqrt(2)"arc "tan(sqrt(tanx))+C`
D. `x-sqrt(2)"arc "tan(tanx)(sqrt(2))+C`

Please log in or register to answer this question.

2 Answers

0 votes
by (74.2k points)
Correct Answer - A
by (10 points)
Solution kaha hai
0 votes
by (53.5k points)

\(\int \frac{sin^2x}{1 + sin^2x}dx = \int \frac{1 + sin^2x-1}{1 +sin^2x} dx\)

\(= \int 1- \frac 1{1 + sin^2 x} dx\)

\(= x - \int \frac 1{1 + sin^2x} dx\)

\(= x - \int \frac{sec^2x}{sec^2x + tan^2x}dx\)

\(= x - \int \frac{sec^2x}{1 + 2tan^2x} dx\)

Let \(tan \,x = t\)

then \(sec^2x \,dx = dt\)

\(\therefore \int \frac {sin^2x}{1 + sin^2x} dx = x - \int \frac {dt}{1 + 2t^2}\)

\(= x - \frac 12 \int \frac{dt}{\frac 12 + t^2}\)

\(=x - \frac 12 \,.\frac 1{\sqrt 2} tan^{-1} \left(\cfrac t{\frac 1{\sqrt2}}\right) \)    \(\left(\because \int \frac 1{x^2 +a^2} dx = \frac 1a tan^{-1} \frac xa\right)\)

\(= x - \frac 1{2\sqrt 2} tan^{-1} (\sqrt 2 t)\)

\(= x - \frac1{2\sqrt 2} tan^{-1} (\sqrt 2 tan \,x) \)     \((\because t = tan \,x)\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...