Let `n ge 2` be a natural number and `0 lt theta lt (pi)/(2)`, Then, `int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta` is equal to (where C is a constant of integration)
A. `n/(n^2-1)(1-1/(sin^(n+1)theta))^((n+1)/n)+C`
B. `n/(n^2+1)(1-1/(sin^(n-1)theta))^((n+1)/n)+C`
C. `n/(n^2-1)(1-1/(sin^(n-1)theta))^((n+1)/n)+C`
D. `n/(n^2-1)(1+1/(sin^(n-1)theta))^((n+1)/n)+C`