\(\because\) a2 = \(\frac{a_1-1}{a_0-3}+3=\frac{a_{2-1}}{a_{2-2}-3}+3\)
\(\therefore\) an = \(\frac{a_{n-1}-1}{a_{n-2}-3}+3\)
\(\therefore\) a2 = \(\frac{a_1-1}{a_0-3}+3=\frac{2-1}{1-3}+3\) = \(\frac{1}{-2}+3=\frac52\)
a3 = \(\frac{a_{2}-1}{a_1-3}+3\) = \(\frac{5/2-1}{2-3}+3\) = \(\frac{3/2}{-1}+3=3-\frac32=\frac32\)
a4 = \(\frac{a_{3}-1}{a_2-3}+3\) = \(\frac{3/2-1}{5/2-3}+3\) = \(\frac{1/2}{-1/2}+3\) = 3 - 1 = 2
a5 = \(\frac{a_{4}-1}{a_3-3}+3\) = \(\cfrac{2-1}{\frac32-3}+3\) = \(\frac{1}{-3/2}+3\) = \(\frac{-2}3+3\)
= \(\frac{9-2}3 = 7/3\)
Hence, first five terms of given sequence is a0 = 1, a1 = 2, a2 = 5/2, a3 = 3/2, a4 = 2