
Required bounded region
= \(\int\limits_{π/2}^{π}sin xdx + \int\limits_\pi^{\frac{5\pi}4}(0-sin x)dx\)
= \([-cos x]^{\pi}_{\pi/6}+[cos x]_π^{5\pi/4}\)
= - cos π + cos π/6 + cos 5π/4 - cos π
= -(-1) + \(\frac{\sqrt3}2-\frac1{\sqrt2 }-(-1)
\)
= 2 + \(\frac{\sqrt3}2-\frac1{\sqrt2}\) square units