∵ α is root of x2 + ax + 1 = 0
∴ α2 + aα + 1 = 0
\(\lim\limits_{x\to 1/α}\frac{sin(x^2+ax+1)}{αx-1}\) (0/0 case)
\(=\lim\limits_{x\to 1/α}\frac{cos(α^2+ax+1)(2x+a)}{\alpha}\) (By using D.L.H. rule)
= \(\frac{cos(1/α^2+a/α+1)(2/α + a)}{α}\)
= \(\frac{cos(1/α^2(α^2+aα+1))(2/α+a)}{α}\)
= 2/α2 + a/α cos 0 ( ∵α2 + aα + 1 = 0)
= 2/α2 + a/α (∵ cos 0 = 1)
Hence,\(\lim\limits_{x\to 1/α}\frac{sin(x^2+ax+1)}{αx-1}\) = 2/α2 + a/α