\(\int \frac1{x^3\sqrt{(x^4 + 1)}}dx\)
\(= \int \frac 1 {x^5 \left(1 + \frac1{x^4}\right)^{\frac12}}dx\)
Put \(1 + \frac1 {x^4 } = t\)
⇒ \(\frac{-4}{x^5}dx = dt\)
⇒ \(\frac{dx}{x^5}= \frac{-dt}{4}\)
\(\therefore \int \frac{1}{x^5 \sqrt{1+\frac1{x^4}}}dx = \frac{-1}4\int\frac{dt}{\sqrt t}= \frac{-1}{4}\times 2 \sqrt t+C\)
\(= \frac{-1}{2}\sqrt{1+ \frac1{x^4}}+C\).