g(x) = x3 + x2 + x + 1
∴ g(t) = t3 + t2 + t + 1
when x< 0 , f (x) = max (g(t) , t \(\underline {<}\) x)
∵ t \(\underline {<}\) x & x < 0
⇒ t < 0
now g1 (t) = 3t2 + 2t+1
= 3 (t2 + 2/3 t + 1/3)
= 3((t + 1/3)2 + 1/3 - 1/9)
= 3 (t + 1/3)2 + 2/9)
= 3 (t + 1/3)2 + 2/3 > 0
∴ g (t) is strictly increasing function
Hence, g (+) < g (0) (∵ t < 0)
⇒ g (t) < 1 (∵ g (0) = 1)
∴ max g (t) = 1 , t \(\underline {<}\) x & < 0
∴f(x) = \(\begin{cases}max(g(t);t\underline{<}x)&;x<0\\ 3-x&;x>0\end{cases} \)
\(\begin{cases}1&;x<0\\ 3-x&;x>0\end{cases} \)

∴ Maxima off(x) is 3.
& Minima does not exist