The correct option (d) cotβ
Explanation:
given: 2tanα + cotβ = tanβ
∴ 2tanα = tanβ – cotβ
∴ tanα = [(tanβ – cotβ)/2]
∴ tan(β – α) = [(tanβ – tanα)/{1 + (tanβ ∙ tanα)}]
= [{tanβ – [(tanβ)/2] + [(cotβ)/2]}/{1 + [(tan2β)/2] – (1/2)}]
= [{[(tanβ)/2] + [(cotβ)/2]}/{(1 + tan2β)/2}]
= [(tanβ + cotβ)/(1 + tan2β)]
= [{tanβ + [1/(tanβ)]}/(1 + tan2β)]
= [(1 + tan2β)/{(tanβ)(1 + tan2β)}]
= cotβ.