The correct option (D) 26
Explanation:
Lines: L = [(x – 23)/(– 6)] = [(y – 19)/(– 4)] = [(z – 25)/3] = k1
Let P ∈ L
∴ P(– 6k1 + 23, – 4k1 + 19, 3k1 + 25) ....(1)
Line: M = [(x – 12)/(– 9)] = [(y – 1)/4] = [(z – 5) / 2] = k2
Let Q ∈ M
∴ Q(– 9k2 + 12, 4k2 + 1, 2k2 + 5) ....(2)
∴ vector PQ = (– 9k2 + 6k1 – 11, 4k2 + 4k1 – 18, 2k2 – 3k1 – 20)
also vector ℓ = (– 6, – 4, 3) and vector m = (– 9, 4, 2)
∴ vector PQ ∙ vector ℓ = 0 gives 44k2 – 61k1 + 78 = 0 ......(3)
∴ vector PQ ∙ vector m = 0 gives 101k2 – 44k1 – 13 = 0 .......(4)
solving (3) & (4)
k1 = 2 and k2 = 1
∴ from (1), P(11, 11, 31)
from (2), Q(3, 5, 7)
∴ vector PQ = (– 8, – 6, – 24)
∴ vector |PQ| = √(64 + 36 + 576) = √(676) = 26 unit.