The correct option (b) 2ab
Explanation:

Let PQRS be rectangle. Where P is (a cos θ, b sin θ)
∴ PS = 2b sinθ and PQ = 2acosθ
∴ Area of rectangle = PQ ∙ PS = 2acosθ ∙ 2bsinθ
∴ A = 2absin2θ
Maximum area will occur when θ = (π/4) i.e. sin 2θ = 1.
∴ Area of maximum rectangle is 2ab(1) = 2ab.