(A) \(\frac{x-1}{0}=\frac{y-1}{0}=\frac{z-1}{5}\)
(B) \(\frac{x-6}{-5}=\frac{y}{2}=\frac{z}{3}\)
(D) \(\frac{x}{1}=\frac{y-4}{-2}=\frac{z}{3}\)
The line should be either coincident on P1 or on P2 or intersect on P1 and P2 on different points.
(D) \(\frac{x}{1}=\frac{y-4}{-2}=\frac{z}{3}\)
⇒ (λ, -2λ + 4,3λ) lie on P2
(A) \(\frac{x-1}{0}=\frac{y-1}{0}=\frac{z-1}{5}\) intersects P1 and P2 on different points.
(B) \(\frac{x-6}{-5}=\frac{y}{2}=\frac{z}{3}\) also intersects P1 and P2 on different points.