Correct option is C) \(\frac{-ca}2\)
a, b, c are in A.P.
\(\therefore b = \frac{a + c}2\) ....(1)
\(\because\) a2, b2, c2 are in H.P.
\(\therefore \frac1{a^2}, \frac 1{b^2}, \frac 1{c^2}\) are in A.P.
\(\therefore \frac1{b^2 } - \frac1{a^2} = \frac1{c^2} - \frac1{b^2}\)
⇒ \(\frac{a^2 -b^2}{a^2b^2} = \frac{b^2 - c^2}{b^2c^2}\)
⇒ \(\frac{(a -b)(a +b)}{a^2} = \frac{(b - c)(b + c)}{c^2}\)
⇒ \(\frac{(a -b)(a +b)}{a^2} = \frac{(a - b)(b + c)}{c^2}\) \(\begin{pmatrix}\because \text{a, b,c are in A.P.}\\\therefore b -a = c-b\\⇒a -b = b-c\end{pmatrix}\)
⇒ \(\frac{a +b}{a^2} = \frac{b +c}{c^2}\)
⇒ \(a^2 (b + c) = c^2(a + b)\)
⇒ \(a^2b + a^2c = c^2 a + c^2b\)
⇒ \(a^2b - c^2b + a^2c - c^2a = 0\)
⇒ \(b(a^2 - c^2) + ac(a - c) = 0\)
⇒ \(b(a -c)(a + c) + ac(a -c) = 0\)
⇒ \((a -c) (b(a +c) + ac) = 0\)
either \(a -c = 0\, or\, b(a + c) + ac =0\)
If \(a- c = 0\) ⇒ \(a = c\)
which is possible when a = b = c but a, b, c are different
\(\therefore b(a +c) + ac = 0\)
\(b(2b) + ac = 0 \) (From(i))
⇒ \(b^2 = \frac{-ac}2\)