15. ABC is a right angled triangle in which ∠A = 90° and AB = AC, find ∠B and ∠C.
Solution:
In ∆ABC, we have AB = AC [Given]
∴ Their opposite angles are equal.

⇒ ∠ACB = ∠ABC
Now, ∠A + ∠B + ∠C = 180° [Angle sum property of a ∆]
⇒ 90° + ∠B + ∠C = 180° [∠A = 90°(Given)]
⇒ ∠B + ∠C= 180°- 90° = 90°
But ∠B = ∠C
∠B = ∠C = \(\frac{90°}2\) = 45°
Thus, ∠B = 45° and ∠C = 45°
16. Show that the angles of an equilateral triangle are 60° each.
Solution:
In ∆ABC, we have

AB = BC = CA
[ABC is an equilateral triangle]
AB = BC
⇒ ∠A = ∠C …(1) [Angles opposite to equal sides of a A are equal]
Similarly, AC = BC
⇒ ∠A = ∠B …(2)
From (1) and (2), we have
∠A = ∠B = ∠C = x (say)
Since, ∠A + ∠B + ∠C = 180° [Angle sum property of a A]
∴ x + x + x = 180o
⇒ 3x = 180°
⇒ x = 60°
∴ ∠A = ∠B = ∠C = 60°
Thus, the angles of an equilateral triangle are 60° each.
17. ∆ABC and ∆DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see figure). If AD is extended to intersect BC at P, show that

(i) ∆ABD ≅ ∆ACD
(ii) ∆ABP ≅ ∆ACP
(iii) AP bisects ∠A as well as ∠D
(iv) AP is the perpendicular bisector of BC.
Solution:
(i) In ∆ABD and ∆ACD, we have
AB = AC [Given]
AD = DA [Common]
BD = CD [Given]
∴ ∆ABD ≅ ∆ACD [By SSS congruency]
∠BAD = ∠CAD [By C.P.C.T.] …(1)
(ii) In ∆ABP and ∆ACP, we have
AB = AC [Given]
∠BAP = ∠CAP [From (1)]
∴ AP = PA [Common]
∴ ∆ABP ≅ ∆ACP [By SAS congruency]
(iii) Since, ∆ABP ≅ ∆ACP
⇒ ∠BAP = ∠CAP [By C.P.C.T.]
∴ AP is the bisector of ∠A.
Again, in ∆BDP and ∆CDP,
we have BD = CD [Given]
DP = PD [Common]
BP = CP [ ∵ ∆ABP ≅ ∆ACP]
⇒ A BDP = ACDP [By SSS congruency]
∴ ∠BDP = ∠CDP [By C.P.C.T.]
⇒ DP (or AP) is the bisector of ∠BDC
∴ AP is the bisector of ∠A as well as ∠D.
(iv) As, ∆ABP ≅ ∆ACP
⇒ ∠APS = ∠APC, BP = CP [By C.P.C.T.]
But ∠APB + ∠APC = 180° [Linear Pair]
∴ ∠APB = ∠APC = 90°
⇒ AP ⊥ BC, also BP = CP
Hence, AP is the perpendicular bisector of BC.
18. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that
(i) AD bisects BC
(ii) AD bisects ∠A
Solution:
(i) In right ∆ABD and ∆ACD, we have
AB = AC [Given]

∠ADB = ∠ADC [Each 90°]
AD = DA [Common]
∴ ∆ABD ≅ ∆ACD [By RHS congruency]
So, BD = CD [By C.P.C.T.]
⇒ D is the mid-point of BC or AD bisects BC.
(ii) Since, ∆ABD ≅ ∆ACD,
⇒ ∠BAD = ∠CAD [By C.P.C.T.]
So, AD bisects ∠A
19. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and OR and median PN of ∆PQR (see figure). Show that
(i) ∆ABC ≅ ∆PQR
(ii) ∆ABM ≅ ∆PQN

Solution:
In ∆ABC, AM is the median.
∴ BM = \(\frac12\)BC ……(1)
In ∆PQR, PN is the median.
∴ QN = \(\frac12\)QR …(2)
And BC = QR [Given]
⇒ 12BC = \(\frac12\)QR
⇒ BM = QN …(3) [From (1) and (2)]
(i) In ∆ABM and ∆PQN, we have
AB = PQ , [Given]
AM = PN [Given]
BM = QN [From (3)]
∴ ∆ABM ≅ ∆PQN [By SSS congruency]
(ii) Since ∆ABM ≅ ∆PQN
⇒ ∠B = ∠Q …(4) [By C.P.C.T.]
Now, in ∆ABC and ∆PQR, we have
∠B = ∠Q [From (4)]
AB = PQ [Given]
BC = QR [Given]
∴ ∆ABC ≅ ∆PQR [By SAS congruency]
20. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
Solution:
Since BE ⊥ AC [Given]

∴ BEC is a right triangle such that ∠BEC = 90°
Similarly, ∠CFB = 90°
Now, in right ∆BEC and ∆CFB, we have
BE = CF [Given]
BC = CB [Common hypotenuse]
∠BEC = ∠CFB [Each 90°]
∴ ∆BEC ≅ ∆CFB [By RHS congruency]
So, ∠BCE = ∠CBF [By C.P.C.T.]
or ∠BCA = ∠CBA
Now, in ∆ABC, ∠BCA = ∠CBA
⇒ AB = AC [Sides opposite to equal angles of a ∆ are equal]
∴ ABC is an isosceles triangle.
21. ABC is an isosceles triangle with AB = AC. Draw AP ⊥ BC to show that ∠B = ∠C.
Solution:
We have, AP ⊥ BC [Given]

∠APB = 90° and ∠APC = 90°
In ∆ABP and ∆ACP, we have
∠APB = ∠APC [Each 90°]
AB = AC [Given]
AP = AP [Common]
∴ ∆ABP ≅ ∆ACP [By RHS congruency]
So, ∠B = ∠C [By C.P.C.T.]