Foci (±4, 0), the latus rectum is of length 12.
Here, the foci are on the x-axis.
Therefore, the equation of the hyperbola is of the form X2/a2 - Y2/b2 =1.
Since the foci are (±4, 0), c = 4.
Length of latus rectum = 12

We know that a2 + b2 = c2.
∴a2 + 6a = 16
⇒ a2 + 6a – 16 = 0
⇒ a2 + 8a – 2a – 16 = 0
⇒ (a + 8) (a – 2) = 0
⇒ a = –8, 2
Since a is non-negative, a = 2.
∴b2 = 6a = 6 × 2 = 12
Thus, the equation of the hyperbola is X2/4 - Y2/12 =1.