The correct option (C) y = k(ex – 1)
Explanation:
(y2/y1) = 1
∴ (d/dx) (log y1) = c
∴ (logy1) = x + c
∴ y1 = ex+c
i.e. (dy/dx) ex+c = ex ∙ ec
Integrating
∴ y = ex ∙ ec + k
when x = 0, y = 0 ⇒ k = – ec
y = exec – ec = ec(ex – 1)
∴ y = k(ex – 1) ---- put ec = k