The distance between the chords of contact of the tangents to the circle x2 + y2 + 2gx + 2fy + c = 0 from the origin and the point (g, f) is
(a) g2 + f2
(b) \(\frac12(g^2+f^2+c)\)
(c) \(\frac12\left(\frac{g^2+f^2+c}{\sqrt{g^2 + f^2}}\right)\)
(d) \(\frac12\frac{g^2+f^2-c}{\sqrt{g^2 + f^2}}\)