Correct option is (b) 30
\(\frac {x^2}{25} +\frac {y^2}{16} = 1\)
a = 5
b = 4
a > b
\(b^2 = a^2 (1-e^2)\)
\(16 = 25 (1-e^2)\)
e = 3/5
focus \((\pm ae ,0) \equiv (\pm 3,0)\)
\(\frac {x^2}{24} + \frac {y ^2}{49} =1\)
a \(=\sqrt {24}\)
b = 7
a < b
\(a^2 = b^2 (1-e ^2)\)
\(24 = 49 (1-e^2)\)
e = 5/7
focus \((0, \pm be) \equiv (0, \pm 5)\)

Let diagonals be d1 and d2
\(d_1 = \sqrt {(0-0)^2 + (5+5)^2} =10\)
\(d_2 = \sqrt {(-3-3)^2 + (0-0)^2 }= 6\)
Now, Area of parallelogram
\(=\frac {1}{2}\times d_1 \times d_2\)
\( =\frac {1}{2} \times 10 \times 6\)
= 30