Let n and k be positive integers such that n ≥ k+1C2. The number of solutions (x1, x2,....xk); x1 ≥ 1 ≥ x2 ≥ 2,.......xk ≥ k all integers satisfying x1 + x2 +...+ xk = n is
a. \(^{n-\frac k2}C_k\)
b. \(^{n-1-\frac k2}C_k\)
c. \(^{n-1-\frac k2}C_{k-1}\)
d. \(^{n+1-\frac k2}C_{k-1}\)