The correct option (b) – [(cos32x)/(1024)]
Explanation:
We know sin16x = sin[2(8x)]
= 2 sin8x ∙ cos8x
= 2 sin[2(4x)] cos8x
= 2(2)sin(4x) ∙ cos4x ∙ cos8x
= 4 × 2 sin2x ∙ cos2x ∙ cos4x ∙ cos8x
= 8 × 2 × sinx cosx ∙ cos2x ∙ cos4x ∙ cos8x sin16x
= 16sinx ∙ cosx ∙ cos2x ∙ cos4x ∙ cos8x
∴ cosx ∙ cos2x ∙ cos4x ∙ cos8x
= [(sin16x)/(16sinx)] (1)
I = ∫sinx ∙ [(sin16x)/(16sinx)] ∙ cos16x ∙ dx
= (1/16) × (1/2) ∫sin32x dx
= [(– cos32x)/(32)2]
= [(– cos32x)/(1024)]