Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
2.1k views
in Mathematics by (75.4k points)
edited by

Prove that the condition that x cos α + y sin α = p touches  the curve xm yn = am+n is pAmnnm = AA ∙ aA cosm α ∙ sin then A =_____ pm+n ∙mm ∙ nn =

(a) m + n 

(b) m – n 

(c) n – m 

(d) m2 – n2

1 Answer

+1 vote
by (70.8k points)
selected by
 
Best answer

The correct option (a) m + n   

Explanation:

Carve: xm yn = am+n ⇒ m ∙ log x + n ∙ log y = (m + n) log a

∴ (m/x) + n ∙ (1/y) (dy/dx) = (m + n) (0)

∴ (m/x) =[(– n)/y] (dy/dx)

∴ (dy / dx) = [(– my)/(nx)]

Let point (x1, y1be on curve, then equation of tangent at (x1, y1) is

(y – y1) = (dy/dx)at [(x)1,(y)1] (x – x1)

i.e. (y – y1) = [(– my1)/(nx1)] (x – x1) ⇒ (mx/x1) + (ny / y1) = m + n (1)

also condition given is x cos α + y sin α = p (2)

∴ from (1) & (2), [(cos α)/(m/x1)] [(sin α)/(n/y1) = [p/(m + n)]

⇒ [(x1 cos α)/m] = [(y1 sin α)/n] = [(p/(m + n)

∴ x1 = [mp/{(m + n)cos x}] and

y1 = [np/{(m + n) sin x}]

∴ x1m ∙ y1n = [{mm pm ∙ nn ∙ pn}/{(m + n)m+n cosm α ∙ sinn α}] and xm yn = am+n hence

am+n (m + n)m+n cosm α ∙ sinn α = mm ∙ nn ∙ p(m+n)

but given condition is

pA mm nn = AA ∙ aA ∙ cosmα sinnα

by comparison, A = m + n

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...