The correct option (a) m + n
Explanation:
Carve: xm yn = am+n ⇒ m ∙ log x + n ∙ log y = (m + n) log a
∴ (m/x) + n ∙ (1/y) (dy/dx) = (m + n) (0)
∴ (m/x) =[(– n)/y] (dy/dx)
∴ (dy / dx) = [(– my)/(nx)]
Let point (x1, y1) be on curve, then equation of tangent at (x1, y1) is
(y – y1) = (dy/dx)at [(x)1,(y)1] (x – x1)
i.e. (y – y1) = [(– my1)/(nx1)] (x – x1) ⇒ (mx/x1) + (ny / y1) = m + n (1)
also condition given is x cos α + y sin α = p (2)
∴ from (1) & (2), [(cos α)/(m/x1)] [(sin α)/(n/y1) = [p/(m + n)]
⇒ [(x1 cos α)/m] = [(y1 sin α)/n] = [(p/(m + n)
∴ x1 = [mp/{(m + n)cos x}] and
y1 = [np/{(m + n) sin x}]
∴ x1m ∙ y1n = [{mm pm ∙ nn ∙ pn}/{(m + n)m+n cosm α ∙ sinn α}] and xm yn = am+n hence
am+n (m + n)m+n cosm α ∙ sinn α = mm ∙ nn ∙ p(m+n)
but given condition is
pA mm nn = AA ∙ aA ∙ cosmα sinnα
by comparison, A = m + n