The correct option (a) |(π/4), (π/2)|
Explanation:
f(x) = sin4 x + cos4 x
∴ f'(x) = 4 sin3 x + 4 cos3 cos x (– sin x)
= 4 sin x ∙ cos x [sin2 x – cos2 x]
∴ f'(x) = – 2 sin 2x ∙ cos 2x
∴ f'(x) = – sin 4x
we have, x ∈ [0, (π/2)]
∴ 4x ∈ [0, 2π]
Now sin 4x ≤ 0 for x ∈ [(π/4), (π/2)]
∴ f'(x) > 0 for (π/4) < x < (π/2)
∴ f(x) is increasing on [(π/4), (π/2)]