Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
1.2k views
in Limits by (15 points)
Let \( e \) denote the base of the natural logarithm. The value of the real number a for which the right hand limit \( \lim _{x \rightarrow 0^{+}} \frac{(1-x)^{1 / x}-e^{-1}}{x^{a}} \) is equal to a non-zero moal number, is (1).

Please log in or register to answer this question.

1 Answer

0 votes
by (51.2k points)

\(\lim\limits_{x\to 0^+} \cfrac{(1 - x)^\frac 1x - e^{-1}}{x^a}\)   \(\left(\frac 00 -case\right)\)

\(= \lim\limits_{x+0^+} \cfrac{\left( - \frac{log(1-x)}{x^2} - \frac1{x(1 -x)}\right)(1-x)^\frac1x}{ax^{a-1}}\)   (By using D.L.H. Rule)

\(= \lim\limits_{x\to 0^+} \cfrac{-((1-x)log(1-x) + x)(1-x)^\frac 1x}{x^2(1-x). ax^{a-1}}\)

\(= -\frac{e^{-1}}a \lim\limits_{x\to 0^+} \cfrac{(1 - x)log(1-x) + x}{x^{a + 1}}\)    \(\left(\frac 00 -case\right)\)

\(= -\frac{e^{-1}}a \lim\limits_{x\to 0^+} \cfrac{(1 - x)(-x-\frac{x^2}2 - \frac{x^3}3 - ...) + x}{x^{a + 1}}\)

\(= \frac{e^{-1}}a \lim\limits_{x\to 0^+} \cfrac{(x+\frac{x^2}2 +\frac{x^3}3+ ...) -(x^2+\frac{x^3}2 +\frac{x^4}3 + ...)- x}{x^{a + 1}}\)

\(= \frac{e^{-1}}a \lim\limits_{x\to 0^+} \cfrac{-\frac{x^2}2 - \frac{x^3}6 - ....}{x^{a +1}}\)

For limit to be exist a+1 should be equal to 2.

\(\therefore a + 1 = 2\)

⇒ \(a = 1\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...