1. At room temperature, hydrogen halides are gases but hydrogen fluoride can be readily liquefied. The gases are colourless but, with moist air gives white fumes due to the production of droplets of hydrohalic acid. In HF, due to the presence of strong hydrogen bond it has high melting and boiling points. This effect is absent in other hydrogen halides.
2. Stability: The bond strength H—X decreases from HF to HI. Thus, HF is the most stable while HI is the least stable. The decrease is stability is due
to decrease in electronegativity from fluorine to iodine. This is reflected in the values of dissociation energy of H—X bond.
3. Volatility of the hydrides: A more volatile liquid must have a lower boiling point. The volatility of the hydrides shows the order HF < HI < HBr < HCl. The boiling point of HF is the highest due to extensive hydrogen bonding. As we move from HCl to HI, then boiling points show a regular increase due to a corresponding increase in the magnitude of vanderwaals force of attraction as the size of the halogen increases.
4. Thermal stability: Thermal stability increases in the order HI< HBr < HCl < HF. Thermal stability is directly proportional to the bond dissociation energy. Since the bond dissociation energy of HF is the highest and that of HI is the least, therefore HF is the most stable halogen acid while the HI is the least stable halogen acid.
5. Acid Strength: Aci(i strength increases in the order HF < HCl < HBr < HI. The strength of an acid depends upon its degree of ionisation which, in turn, depends upon the bond strength.

Thus higher the bond dissociation energy, lower is its degree of ionisation and weaker in the acid. Since bond dissociation energies of halogen acids increases in the order HI < HBr < HCl < HF the strength of acids increases in the reverse direction, i.e., HF < HCl < HBr < HI.