The correct option (a) 66,430
Explanation:
limx→1 [(x365 – 365x + 364)/(x – 1)2]
= limx→1 [(x365 – 1 – 365x + 365)/(x – 1)2]
= limx→1 [{(x – 1)(x364 + x363 + .... 1) – 365(x – 1)}/(x – 1)2]
= limx→1 [{(x364 + x363 + .... 1) – (1 + 1 + 1+ .... 365 times)}/(x – 1)]
= limx→1 [{(364x363 + 363x362 + 362x361 + ..... 0) – 0}/(1 – 0)]
(∵ limx→a [{f(x)}/{g(x)}] = limx→a [{f'(x)}/{g'(x)}])
= [(364 + 363 + 362 + ..... 0)/1]
= sum of A.P.
= (365/2) (364 + 0)
= 66,430.