Question: Let H: x2/a2 - y2/b2 = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is 4(2√2 + √14). If the eccentricity H is √11/2, then the value of a2 + b2 is equal to ______.
Answer: Transverse axis, T.A.= 2a
Conjugate axis, C.A.= 2b
Therefore, Sum of T.A. and C.A.= 2a+2b= 2(a+ b)
A/q, 2(a+b)= 4(2√2+√14)=> (a+b)=2(2√2+√14)=> (a+b)= (4√2+ 2√14)
Since, x2+ y2= (x2+ y2)- 2xy
Therefore, (a2+ b2)= (4√2+ 2√14)2- 2(4√2)(2√14)
=>(a2+ b2)= (32+ 16√7+ 56)- 32√7
= 88+ 16√7- 32√7
=>(a2+ b2)= 88