The correct option (b) – (4/3)
Explanation:
given: limx→(π/3) [{1 – √(3)cotx}/(2cosx – 1)]
∵ limx→a [{f(x)}/{g(x)}] = limx→a [{f'(x)}/{g'(x)}]
if limx→a [{f(x)}/{g(x)}] = 0
∴ limx→(π/3) [{1 – √3[(cosx)/(sin x)]}/(2cosx – 1)]
= limx→(π/3) [{sinx – √(3)cos x}/(sin2x – sinx)]
= limx→(π/3) [{cosx + √(3)sin x}/(2cos2x – cosx)]
= [{(1/2) + √3(√3/2)}/{2[– (1/2)] – (1/2)}]
= [(4/2)/{– (3/2)}]
= – (4/3)