The correct option (c) 1
Explanation:
as f(x) = [{log[1 + x + x2] + log[1 – x + x2]}/(sec x – cos x)]
∴ limx→0 f(x) = limx→0 [{log[1 + x + x2] + log[1 – x + x2]}/{[1/(cos x)] – cos x}]
= limx→0 [{log[(1 + x2)2 – x2]}/{sin x ∙ tan x}]
= limx→0 [{log(1 + x2 + x4)}/{sin x ∙ tan x}] [(0/0) form]
= limx→0 [{log(1 + x2[1 + x2])}/{x2(1 + x2)}] ∙ x2(1 + x2) ∙ [1/{sin x ∙ tan x}]
as limx→0 [{log(1 + x)}/x] = 1
we get,
limx→0 [{log(1 + x2[1 + x2])}/{x2(1 + x2)}] ∙ x2(1 + x2) ∙ [1/{[{(sin x)/x} ∙ {(tan x)/x}]x2}]
= limx→0 [{log(1 + x2[1 + x2])}/{x2(1 + x2)}] ∙ limx→0 (1 + x2)∙ [1/{limx→0 [(sinx)/x] ∙ [(tanx)/x]}]
= 1 × 1 × (1/1)
= 1