\((x^3+3xy^2)\frac{\mathrm dy}{\mathrm d x} = y^3+3x^2y\)
\(\frac{\mathrm dy}{\mathrm d x} =\frac{y^3+3x^2y}{x^3+3xy^2}\)
\(F(x,y)=\frac{y^3+3x^2y}{x^3+3xy^2}\)
Let \(x=\lambda x\) and \(y=\lambda y\) and replace by \(x=\lambda x\) and \(y=\lambda y\)
\(F(\lambda x,\lambda y)=\frac{(\lambda y)^3+3(\lambda x)^2 \lambda y}{(\lambda x)^3+3\lambda x(\lambda y)^2}\)
\(F(\lambda x,\lambda y)=\frac{\lambda^3 y^3+3\lambda^2 x^2 \lambda y}{\lambda^3 x^3+3\lambda x\lambda^2 y^2}\)
\(F(\lambda x,\lambda y)=\frac{\lambda^3 y^3+3\lambda^3 x^2 y}{\lambda^3 x^3+3\lambda^3 x y^2}\)
\(F(\lambda x,\lambda y)=\frac{\lambda^3( y^3+3 x^2 y)}{\lambda^3 (x^3+3x y^2)}\)
\(F(\lambda x,\lambda y)=\frac{( y^3+3 x^2 y)}{(x^3+3x y^2)}\)
\(F(\lambda x,\lambda y)=\lambda^0 \frac{( y^3+3 x^2 y)}{(x^3+3x y^2)}\)
This is a zero degree homogeneous differential equation.
Let \(y=vx\)
Differentiating with respect to x, we will get ,
\(\frac{\mathrm dy}{\mathrm d x} =v+x\frac{\mathrm dv}{\mathrm d x} \)
\(v+x\frac{\mathrm dv}{\mathrm d x} =\frac{(vx)^3+3x^2vx}{x^3+3x(vx)^2}\)
\(v+x\frac{\mathrm dv}{\mathrm d x} =\frac{v^3x^3+3vx^3}{x^3+3vx^3}\)
\(v+x\frac{\mathrm dv}{\mathrm d x} =\frac{x^3(v^3+3v)}{x^3(1+3v)}\)
\(x\frac{\mathrm dv}{\mathrm d x} =\frac{(v^3+3v)}{(1+3v)}-v\)
\(x\frac{\mathrm dv}{\mathrm d x} =\frac{(v^3+3v)-v(1+3v)}{(1+3v)}\)
\(x\frac{\mathrm dv}{\mathrm d x} =\frac{v^3+3v-v-3v^2}{(1+3v)}\)
\(x\frac{\mathrm dv}{\mathrm d x} =\frac{v^3+2v-3v^2}{(1+3v)}\)
\(x\frac{\mathrm dv}{\mathrm d x} =\frac{v(v^2-3v+2)}{(1+3v)}\)
\(\frac{(1+3v)}{v(v^2-3v+2)} dv=\frac{dx}{x}\)
\(\frac{(1+3v)}{v(v-2)(v-1)} dv=\frac{dx}{x}\)
Using partial fraction,
\((\frac{1}{2v}+\frac{7}{2(v-2)}-\frac{4}{(v-1)} )dv=\frac{dx}{x}\)
\(\int (\frac{1}{2v}+\frac{7}{2(v-2)}-\frac{4}{(v-1)} )dv=\int \frac{dx}{x}\)
\(\int \frac{1}{2v}dv+\int \frac{7}{2(v-2)}dv-\int \frac{4}{(v-1)} dv=\int \frac{dx}{x}\)
\( \frac{1}{2}ln|v|+ \frac{7}{2}ln|v-2|- \frac{1}{4}ln|v-1| =ln|x|+c\)
\(\frac{1}{2}ln|\frac{y}{x}|+ \frac{7}{2}ln|\frac{y}{x}-2|- \frac{1}{4}ln|\frac{y}{x}-1| =ln|x|+c\)