We know, electric field due to a linear change distribution at any point at a distance r is :
E = \(\frac{λ}{2\pi\epsilon_0r}\)

We know ;
E = -dv/dr
or dv = -Edr
∴ V = -∫Edr
∴ VA = \(\int\limits_a^{d-a}(\frac{λ}{2\pi\epsilon _0}) \frac{dr}{r}\)
\(=\cfrac{-λ}{2\pi \epsilon _0 }||lnr|^{d-a}_a\)
\(=\frac{λ}{2\pi \epsilon _0}\) {lna - ln (d -a)}
∴ \(V_B \int\limits_{d-b}^b (\frac{-λ}{2\pi \epsilon_0})\frac{dr}{r}\)
\(=\frac{λ}{2\pi \epsilon_0}|lnr|^b_{d-b}\)
\(=\frac{λ}{2\pi \epsilon _0}\){lnb - ln(d-p)}
∴ VA - VB = \(\frac{λ}{2\pi \epsilon _0} \,ln(\frac{(d-a)(d-b)}{ab})\)